Abstract
The antimicrobial effect of metal nanoparticles such as zinc oxide and silver nanoparticles has been taken into great consideration separately during recent years. The useful application of these nanoparticles in the areas of medicine, biotechnology, and professional prevention of microbes motivated us. The aim of this study was to evaluate antibacterial activity properties of silver doped zinc oxide nanoparticles (ZnO: Ag) by synthesizing them.Materials and Methods: The silver doped zinc oxide nanoparticles (ZnO:Ag) were provided with wet chemical method in an aqueous solution, and mercaptoethanol. The physical properties of the sample were investigated with UV, XRD, and TEM techniques. Then, the antibacterial activity of 50 to 3.12 concentrations of the silver doped zinc oxide nanoparticles (ZnO:Ag) was investigated against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis by well diffusion method. Moreover, the MIC and MBC values of these nanoparticles were assessed by microdilution method.Results: The size of the nanoparticles was obtained as between 12 and 13 nanometers in average. The optical study of the nanoparticles demonstrated that the band gap of the silver doped nanostructures is higher than that of the pure sample. The zone of inhibition diameter in the presence of 50 mg/ml density was 19, 15 and 8 mm against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, respectively.Conclusion: The results showed that silver doped zinc oxide nanoparticles prevented Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, but did not affect Enterococcus faecalis. The zone of inhibition diameter increases as the density of the nanoparticles does.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.