Abstract
Purpose High surface area-to-volume ratios make nanoparticles ideal for cancer heat therapy and targeted medication delivery. Moreover, ternary nanofluids (TNFs) may possess superior thermophysical properties compared to mono- and hybrid nanofluids due to their synergistic effects. In light of this information, the objective of this article is to examine the blood-based TNF flow within convergent/divergent channels under velocity slip and temperature jump. Design/methodology/approach Leading partial differential equations corresponding to the problem are transformed into a system of nonlinear ordinary differential equations by using similarity variables. The bvp4c code that uses the finite difference method is used to obtain a numerical solution. Findings The effect of nanoparticles may change depending on the characteristics of flow near the wall. The properties and proportions of the used nanoparticles become important to control the flow. When TNF was used, an increase in the Nusselt number between 4.75% and 6.10% was observed at low Reynolds numbers. At high Reynolds numbers, nanoparticles reduce the Nusselt number and skin friction coefficient values under some special flow conditions. Importantly, the effects of second-order slip on engineering parameters were also investigated. Furthermore, the Nusselt number increases with increasing shape factor. Research limitations/implications Obtained results of the study can be beneficial in both nature and engineering, especially blood flow in veins. Originality/value The main innovations of this study are the usage of blood-based TNF and the examination of the effect of shape factor in convergent/divergent channels with second-order velocity slip.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have