Abstract

Solid-state (23) Na NMR spectra of two organometallic complexes, cyclopentadienylsodium (CpNa) and the tetrahydrofuran (THF) solvate of CpNa (CpNa·THF), are presented. Analytical simulations of experimental spectra and calculated (23) Na electric-field gradient (EFG) tensors confirm that both complexes are present in microcrystalline samples of CpNa recrystallized from THF. For the solvate, (23) Na NMR experiments at 9.4 T and 11.7 T elucidate sodium chemical shielding (CS) tensor parameters, and establish that the EFG and CS tensor frames are non-coincident. Single-crystal X-ray diffraction (XRD) experiments are used to determine the crystal structure of CpNa·THF: Cmca (a = 9.3242(15) Å, b = 20.611(3) Å, c = 9.8236(14) Å, α = β = γ = 90° , V = 1887.9(5)Å(3) , Z = 8). For CpNa, (23) Na NMR data acquired at multiple field strengths establish sodium CS tensor parameters more precisely than in previous reports. Variable-temperature (VT) powder XRD (pXRD) experiments determine the temperature dependence of the CpNa unit cell parameters. The combination of (23) Na quadrupolar NMR parameters, pXRD data and calculations of (23) Na EFG tensors is used to examine various models of dynamic motion in the solid state. It is proposed that the sodium atom in CpNa undergoes an anisotropic, temperature-dependent, low frequency motion within the ab crystallographic plane, in contrast with previous models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call