Abstract

Axial-flow pumps consider both the conventional pump mode and the pump as turbine (PAT) mode operation and put forward higher requirements for long-term operation stability and structural strength; therefore, it is of great engineering significance to evaluate the structural strength and fatigue life of the rotor under full operating conditions. In this study, based on computational fluid dynamics and the one-way fluid-structure interaction algorithm, the structural strength and fatigue life of the rotor system of a large vertical axial-flow pump under full operating conditions were evaluated and studied. The results show that blade deformation and equivalent stress are generally higher in the PAT mode than in the pump mode. The maximum deformation in both modes occurs at the tip of the blade, while the area of stress concentration is at the root of the blade. Both the deformation and the equivalent stress increase with increasing flow rate. The minimum safety factor occurs at the blade root in both modes, and the safety factor in the PAT mode is relatively smaller than that in pump mode. Therefore, when designing and manufacturing axial flow pumps for turbine duties, priority should be given to material strength at the blade root during PAT mode operation to ensure safe and stable operation. The aim of this study is to provide technical references and theoretical foundations for evaluating the service cycle of axial-flow pumps and the influence on pump life under different operation modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call