Abstract

Amyloid fibrils are structurally heterogeneous protein aggregates that are implicated in a wide range of neurodegenerative and other proteopathic diseases. These fibrils exist in a variety of different tertiary and higher-level structures, and this exhibited polymorphism greatly complicates any structural study of amyloid fibrils. In this work, we demonstrate a method of using polarization-resolved microscopy to directly observe the structural heterogeneity of individual amyloid fibrils using amyloid-bound fluorophores. We formulate a mathematical quantity, helical anisotropy, which utilizes the polarized emission of amyloid-bound fluorophores to report on the local structure of individual fibrils. Using this method, we show how model amyloid fibrils generated from short peptides exhibit diverse structural properties both between different fibrils and within a single fibril, in a manner that is replicated for fibrils assembled from longer proteins. Our method represents an accessible and easily adaptable technique by which polymorphism in the structure of amyloid fibrils can be probed. Additionally, the methodology we describe here can be easily extended to the study of other fibrillar and otherwise ordered supramolecular structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.