Abstract
In this paper, we investigate hot carrier injection (HCI) stress induced self-heating behavior for high-voltage n-type Lateral-Diffused-MOSFET (NLDMOS) multi-finger devices. A NMOS device with more poly fingers, for the first time, is found to suffer more threshold voltage drift (ΔVt) but less linear current drift (ΔIdlin) under HCI stress at high gate and drain voltages. The experiment of monitoring device temperature is carried out and TCAD simulations are performed to investigate the physical mechanisms. The effect of poly gate finger numbers (PGFN) is attributed to higher lattice temperature with more PGFN, resulting in higher electrical field in the channel region and lower electrical field in the drift region. HCI behavior in ΔVt and ΔIdlin for different PGFN devices at various ambient temperatures are verified by TCAD simulation. In addition, the effect of PGFN on AC HCI stress and DC HCI Safe-Operation-Area (SOA) are studied. All the experimental findings can be well explained by the effect of self-heating during HCI stress mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.