Abstract

The performance of rotating detonation engines (RDEs) is theoretically better than that of traditional aero engines because of self-pressurization. A type of swirl injection scheme is introduced in this paper for two-phase detonation. On the one hand, experiments are performed on continuous rotating detonation of ternary “kerosene, hydrogen and oxygen-enriched air” mixture in an annular combustor. It is found that increasing the mass fraction of hydrogen can boost the wave speed and the stability of detonation waves’ propagation. One the other hand, characteristics of kerosene–hot air RDE is investigated for engineering application. Some unstable phenomena are recorded, such as changes of the number of detonation waves, low-frequency oscillations, and sporadic detonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.