Abstract

In the present paper, detonation in a stoichiometric oxygen-hydrogen mixture is simulated numerically using 4 detailed chemical mechanisms. The effect of chemical kinetics models on the stability of 1D detonation wave and 2D detonation wave propagating in a plane channel is investigated. The number of detonation cells formed in a channel of a given width at different degrees of overdrive is determined. Simulations are performed using a previously developed computational program based on high-order shock-capturing TVD schemes and a finite-rate chemistry solver. The program is implemented in C++ using the CUDA parallel computing platform for running on graphic processor devices (GPU), the open OpenMP standard for multi-threaded applications on multiprocessor systems with shared memory and the MPI protocol for data exchange between processors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call