Abstract

Monitoring of permafrost phenomena is an integral part of the investigation of Alpine natural environments. The sensitivity of permafrost to climate change and the resulting destabilization of slopes are of particular interest at present. Rock walls react rapidly to changing climate conditions and the consequences can be hazardous. Temporally and spatially resolved monitoring of the terrain surface using terrestrial laser scanning can contribute towards improved process understanding and the prevention and management of natural hazards. The advantages and disadvantages of two scan systems used to monitor a recently deglaciated permafrost rock wall at Gemsstock in the central Swiss Alps are analyzed here and the optimization of referencing methods and accuracy analyses are discussed. Mass movements of around 1800 m3 were detected and quantified over a period of 4 years and mean erosion rates of 6.5 mm year− 1were determined. Volumetric changes caused by rock fall and melting ice could be defined with an accuracy of 4%–10% of their surface area in cubic meters in the direction of projection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.