Abstract
Unwanted redox shuttles can lead to self-discharge and inefficiency in lithium-ion cells. This study investigates the generation of a redox shuttle in LFP/graphite and NMC811/graphite pouch cells with common alkyl carbonate electrolyte. Visual inspection of the electrolyte extracted after formation at temperatures between 25 and 70 °C reveals strong discoloration. Such extracted electrolytes with intense red and brown color show relatively large shuttling currents in Al/Li coin cells. Two weight percent of vinylene carbonate is effective at preventing the redox shuttle generation as indicated by the absence of electrolyte discoloration and shuttling current. Ultra-high precision coulometry demonstrates that the presence of the shuttle molecule during cycling of LFP/graphite and NMC811/graphite pouch cells leads to significant charge endpoint capacity slippage and coulombic inefficiency. A brief constant voltage hold at 4.2 V can eliminate the shuttle molecule.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have