Abstract

To broaden the usefulness of recycled carbon fibers and develop the high value-added product, the recycled carbon fiber-reinforced carbon-matrix composites were prepared using ultrafine-grain coke as a filler and coal tar pitch as a binder via a liquid mixing process. A comprehensive study and investigation of the microstructures and properties of recycled carbon fibers and composites were conducted. It was found that the recycled PAN-based carbon fiber (rPCF) outperformed the recycled rayon-based carbon fiber (rRCF) in terms of fiber integrity and pitch-coated effect in the recycling and forming processes. By relieving thermal stress, lowering stacking pores, and inhibiting the growth of shrinkage pores, the rCF can promote the sintering of the green body. The flexural strength of rPCF-reinforced carbon-matrix composite (30.70 MPa) and rRCF-reinforced carbon-matrix composite (20.75 MPa) increased by 60.6% and 8.6% than that of pristine carbon-matrix composite (19.11 MPa), respectively. The difference in mechanical properties between rPCF-reinforced carbon-matrix composite and rRCF-reinforced carbon-matrix composite is attributed to the mechanical interlock mechanism and fiber pull-out mechanism. This work provides a propagable, affordable, and environment-friendly idea for recycling waste carbon fiber and producing recycled carbon fiber reinforced composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.