Abstract

The mechanical and interfacial properties were evaluated for carbon fiber reinforced composites (CFRC) manufactured using thermally recycled waste carbon fiber and recycled polyethylene terephthalate (PET). The mechanical properties of the recycled fiber were determined and compared to those of neat fibers using the single-fiber tensile test. The surfaces of the recycled and neat carbon fiber were examined and compared using FE-SEM and dynamic contact angle measurements. A goal of the study was to determine the applicability of industrial use of recycled CF and/or recycled PET in CFRC. Mechanical properties were measured using short beam and tensile tests. These properties were observed to be correlated with crystallinity. The interfacial properties between the recycled carbon fibers and recycled PET were evaluated using the microdroplet test. At low temperature residual resin remained on the recycled CFs surface resulting relatively the low interfacial properties. At excessively high temperatures, oxidation occurred, on the CFs surface, which also resulting in relatively poor low mechanical properties. The optimal treatment condition was 500 °C, where the surface was relatively clean and the reduction in mechanical properties was minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.