Abstract

In this article, a rectangular solid-core photonic crystal fiber (PCF) is proposed as temperature sensor. The air-holes of the PCF have been filled with Ethyl alcohol analyte. The full vector finite element method with perfectly matched layer PML is used to investigate the sensing properties. The proposed sensor is working based on changing of analyte refractive index with temperature. The simulated result shows that the confinement loss decreases from 9.505 to 0.698 dB/km as temperature of analyte increases from 20 to 120 °C at 1.5 µm for PCF of air-holes diameter 2.8 µm and pitch 3 µm. Moreover, this work presents a theoretical interpretation of controlling light within filled PCF by varying temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.