Abstract
Microwave electrodeless discharge lamp (MEDL) has been regarded as a powerful light source of photoreaction. Four kinds of chemicals, nitrogen (N2), oxygen (O2), water (H2O) and dimethyl sulfide (DMS), were used as molecular probes to explore the generation process of reactive oxygen species (ROS) and their photo-oxidation performances on the photodegradation of organic pollutants with application of an exterior MEDL system. ROS such as O (3P), O3, O (1D) and 1O2 were generated via irradiation of O2 and H2O except dry N2 by MEDL. They were transformed to other ROS including ·OH and H2O2 with increase of relative humidity. The ROS productivity was inhibited evidently by humidity and ·OH became the major active species at high humidity. An optimal mineralization rate of 23.6% for DMS photodegradation was reached in dry air compared with 8.74% at high humidity, which indicated that O (1D) and 1O2 were more powerful oxidants than O3 and OH. The results showed that the higher mineralization rate of organic pollutants was obtained by increasing the generation efficiency of ROS of O (1D) and 1O2. Furthermore, the results provided an alternative to develop intensification technology on photodegadation of organic pollutants with MEDL system and an optimal operation process including photocatalyst and humidity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have