Abstract

The current article is concerned with the interaction of Rayleigh waves with surface defects of arbitrary shape in a homogeneous, isotropic, linearly elastic half-space. Using a linear superposition principle, the interaction generates a scattered field which is equivalent to the field radiated from a distribution of horizontal and vertical tractions on the surface of the defect. These tractions are equal in magnitude but opposite in sign to the corresponding tractions obtained from the incident wave. The scattered field is then computed as the superposition of the displacements radiated from the tractions at every point of the defect surface using the reciprocity theorem approach. The far-field vertical displacements are compared with calculations obtained by the boundary element method (BEM) for circular, rectangular, triangular and arbitrary-shaped defects. Comparisons between the theoretical and BEM results, which are graphically displayed, are in excellent agreement. It is also discussed the limitations of the proposed approximate theory.
 Keywords:
 half-space; Rayleigh wave; surface defect; reciprocity theorem; boundary element method (BEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.