Abstract

In the present work the authors have studied the attenuation properties of baryte concrete as a biological shield for nuclear power plants, particle accelerators, research reactors, laboratory hot cells and different radiation sources. Investigation has been performed by measuring the transmitted fast neutron and gamma ray spectra through cylindrical samples of baryte concrete (ρ=3.49 g·cm-3). A reactor-collimated beam and neutron-gamma spectrometer with stilbene scintillator were used during measurements. A pulse shape discriminating technique based on zero cross over method was used to discriminate between neutron and gamma pulses. Removal cross-section ΣR,eff and total attenuation coefficient µeff of neutrons and gamma rays were evaluated from the obtained results. Also, slow neutron fluxes have been measured using a collimated reactor beam and BF3 counter, where the macroscopic cross section Σ(En) has been evaluated using the attenuation relation. The total macroscopic cross sections ΣT(En) and total attenuation coefficient µ(Eg) of neutrons and gamma rays have been calculated based on the database cross sections. Also, the total mass attenuation coefficient µeff(Eg)/ρ and µ(Eg)/ρ of gamma ray have been estimated and calculated using the measured results and XCOM code respectively. Measured and calculated results were compared and a reasonable agreement was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.