Abstract

Propagating waves along the cortical surface have recently attracted significant attention by the neuroscience community. However, whether these propagating waves imply network connectivity changes for the neural circuits is not known. In this work, we employ a high density porous graphene microelectrode array and perform in vivo experiments with rodents to investigate network connectivity during cortical propagating waves. The spatial-temporal analysis of the cortical recordings reveals various types of propagating waves across the recording area. Network analysis results show that these propagating waves are consistent with the functional connectivity changes in the neural circuits, suggesting that the underlying network states are reflected by the cortical potential propagation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.