Abstract

The present work investigates a novel CNT based sensor for detection of highly toxic phosgene gas, which is widely used as a chemical agent. The investigation is performed via first-principle means in the vicinity of Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) formalisms. Though the pristine CNT is less reactive towards the phosgene gas, the near valence (B and N) and transition metal (Pt/Au/Pd) doped CNTs show very good reactivity, and the sensing mechanism is guided by Van der Waals interaction based physisorption phenomenon. The sensing mechanism is assessed with the help of various properties/parameters which include adsorption energies, electronic nature, density of states, charge transfer, electrical transport (I-V), recovery time and sensitivity. Unlike the pristine CNT, the doped CNTs exhibited significant sensing behaviour towards the phosgene, especially the transition metal dopants as witnessed from the I-V characteristics. Au-doped CNT offers tremendous reduction in the drive current on adsorption of phosgene gas, which can be used as an electronic fingerprint of detection. In particular, the Pd-doped CNT exhibits superior sensing behaviour in comparison to the other considered dopants, owing to its significant variation in the I-V, a Mulliken charge transfer of 0.24e, excellent sensitivity of 134.75 %, and very less recovery time of 8.9 ns. Thus, the transition metals (in particular Pd) doped CNTs could prove useful for the design of CNT based physical sensors to detect phosgene gas in various industries such as defence sector where phosgene is used as a chemical warfare agent, and in chemical sector where it is used as a precursor to synthesize several chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.