Abstract

Keratoconus is one of the most common causes leading to visual impairment in young adult population. The pathogenesis of keratoconus remains poorly understood. The aim of this study was to identify the potential key genes and pathways associated with keratoconus and to further analyze its molecular mechanism. Two RNA-sequencing datasets of keratoconus and paired normal corneal tissues from the Gene Expression Omnibus database were obtained. Differentially expressed genes (DEGs) were identified, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. The protein-protein interaction (PPI) network of the DEGs was established, and the hub genes and significant gene modules of PPI were further constructed. Lastly, the GO and KEGG analyses of the hub gene were performed. In total, 548 common DEGs were identified. GO enrichment analysis showed that the DEGs were primarily associated with regulation of cell adhesion, the response to molecule of bacterial origin, lipopolysaccharide and biotic stimulus, collagen-containing extracellular matrix, extracellular matrix, and structure organization. KEGG pathway analysis showed that these DEGs were mainly involved in the TNF signaling pathway, IL-17 signaling pathway, Rheumatoid arthritis, Cytokine-cytokine receptor interaction. The PPI network was constructed with 146 nodes and 276 edges, and 3 significant modules are selected. Finally, top 10 hub genes were identified from the PPI network. The results revealed that extracellular matrix remodeling and immune inflammatory response could be the key links of keratoconus, TNF, IL6, IL1A, IL1B, CCL3, MMP3, MMP9, MMP1, and TGFB1 may be potential crucial genes, and TNF signaling pathway and IL-17 signaling pathway were the potential pathways accounting for pathogenesis and development of keratoconus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call