Abstract

Pristine and polyethylene glycol assisted antimony tungstate (Sb2WO6) was developed via hydrothermal route. The pristine and surfactant assisted Sb2WO6 were further exemplified to reveal the properties of the samples. The bandgap calculated for Sb2WO6, 5 ml PEG- Sb2WO6, 10 ml PEG- Sb2WO6 was 2.78 eV, 2.66 eV and 2.21 eV. The 10 ml PEG assisted sample exhibited narrow bandgap. The Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed metal vibrations and stretching of the water molecules adsorbed. The Raman spectra showed the vibrational modes present in Sb2WO6. The morphology was analyzed employing transmission electron microscope (TEM) for all samples. Pristine Sb2WO6 showed growth of nanorods with higher dimensions with high agglomeration. 5 ml PEG- Sb2WO6 showed the growth of nanorods with lesser agglomeration. 10 ml PEG assisted Sb2WO6 exhibited distinct growth of nanorods with no agglomeration on the surface. The elemental composition was examined employing X-ray Photoelectron Spectroscopy. Prepared product photocatalytic behaviour was tested employing Rhodamine B dye degrading. Different catalyst loading were investigated for degrading the toxic pollutants. 0.2 g 10 ml PEG-Sb2WO6 showed 81% efficiency on degrading the toxic pollutant from wastewater. The OH radicals are accountable for photocatalytic behaviour of prepared photocatalyst. The 10 ml PEG-Sb2WO6 has the good reusability behavior and stable properties after three cycles. The prepared 10 ml PEG- Sb2WO6 photocatalyst will be the potential candidate for the remediation of the water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.