Abstract
Reaches guided using monocular versus binocular vision have been found to be equally fast and accurate only when optical texture was available projected from a support surface across which the reach was performed. We now investigate what property of optical texture elements is used to perceive relative distance: image width, image height, or image shape. Participants performed reaches to match target distances. Targets appeared on a textured surface on the left and participants reached to place their hand at target distance along a surface on the right. A perturbation discriminated which texture property was being used. The righthand surface was higher than the lefthand one by either 2, 4 or 6 cm. Participants should overshoot if they matched texture image width at the target, undershoot if they matched image shape, and undershoot far distances and, depending on the overall eye height, overshoot near distances if they matched image height. In Experiment 1, participants reached by moving a joystick to control a hand avatar in a virtual environment display. Their eye height was 15 cm. For each texture property, distances were predicted from the viewing geometry. Results ruled out image width in favor of image height or shape. In Experiment 2, participants at a 50 cm eye height reached in an actual environment with the same manipulations. Results supported use of image shape (or foreshortening), consistent with findings of texture properties used in slant perception. We discuss implications for models of visually guided reaching.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have