Abstract

Recently, research on conducting molecules containing thiol functional groups such as benzenethiol has been progressing [X. Xiao, B. Xu, N.J. Tao, Nano Lett. 4 (2004) 267]. This conducting molecule is applicable to the study of the negative differential resistance (NDR) and switching properties of logic device. The 4-{4[4-(4-{1-[4-(4-acetylsulfanyl-phenylethynyl)-phenyl]-2,6-diphenyl-pyridinium-4-yl}-phenyl)-2,6-diphenyl-pyridinium-1-yl]-phenylethynyl}-phenylthioacetate (dipyridinium) molecule contains thiol functional groups such as benzenethiol. Thus, we have studied an NDR property of a dipyridinium molecule using the self-assembly method in scanning tunneling microscopy (STM). The Au substrate was exposed to a 1 mM solution of 1-dodecanethiol in ethanol for 24 h to form a monolayer. After thorough rinsing of the sample, it was exposed to a 0.1 μM solution of dipyridinium in dimethylformamide (DMF) for 30 min. After the assembly, we measured the electrical properties of the self-assembly monolayers (SAMs) using ultra high vacuum scanning tunneling microscopy (UHV-STM) and scanning tunneling spectroscopy (STS). As a result, we confirmed the properties of NDR in a negative region at −1.67 V and a positive region at 1.78 V. The energy gap ( E g) was found to be 3.12 eV [C. Arena, B. Kleinsorge, J. Robertson, W.I. Milne, M.E. Welland, J. Appl. Phys. 85 (1999) 1609]. This molecule is applicable to the fabrication of molecular junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call