Abstract

The hydrate-based solidified natural gas (SNG) technology is a promising approach for natural gas storage and transportation. One challenge of this technology is to enhance the hydrate formation kinetics and achieve mild storage conditions. This work employed a biomass surfactant sulfonated lignin (SL) to enhance CH4 hydrate formation. Meanwhile, the self-preservation effect of CH4 hydrate formed in the presence of SL was investigated using a high-pressure micro-differential scanning calorimeter (HP μ-DSC). The results indicate that 500 ppm SL is an optimum concentration for improving CH4 hydrate formation kinetics among the five SL concentrations (300, 500, 700, 900, and 1000 ppm) tested. At 500 ppm SL, the CH4 hydrate formation rate was increased significantly, and the largest gas consumption was obtained, which was 2.7 times larger than that obtained in pure water under the same temperature and pressure conditions. The gas consumption was also larger than that obtained in the presence of other surfactants (sodium dodecyl sulfate, silicone surfactant, and ethylene diamine tetraacetamide). CH4 hydrate formed in the presence of SL can be stably preserved at 0.1 MPa and 268.15 K due to the self-preservation effect. Therefore, the energy costs, such as system cooling and gas compression, for SNG using SL are lower than conventional natural gas storage and transport technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.