Abstract

Infrared photoluminescence (PL) measurements were performed on (2ID-oriented superlattices with energy gaps in the range 110–495 meV. Most of the samples with thinner HgTe quantum wells displayed two PL peaks separated by Δhω ≈ 30–65 meV (which generally increased with decreasing well thickness). Both peak energies (Ep) sometimes varied gradually with location on the surface, and in one case three peaks of approximately equal spacing were observed in some locations. The data are consistent with a model which assumes the presence of randomly distributed islands having well thicknesses varying by approximately one monolayer. We find that Ahco and the variations of the spectra with temperature agree well with calculations based on this simple model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.