Abstract

In this experimental study, the tribological behavior of Al 2024–5wt.% SiC–X wt.% graphite (X=5 and 10) hybrid nano-composites was produced using powder metallurgy (P/M) technique. All specimens were prepared by mechanical milling of Al 2024 and SiC–Gr nano-composite powders, followed by a blend–press–sinter methodology. Pin on disc type apparatus has been used for determining the wear loss. The sintered samples have been characterized by XRD. Wear mechanisms are discussed based on scanning electron microscopy observations of worn surface and wear debris morphology. The hardness and wear resistance of the hybrid nano-composites were increased considerably by increasing the reinforcement content. The nano-composite with 5wt.% SiC and 10wt.% Gr showed the greatest improvement in tribological performance. Primary wear mechanisms for hybrid nano-composites were determined to be formation of lubricating layer on the surface of samples. The overall results revealed that hybrid aluminium nano-composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, particularly structural applications in the aerospace, automotive and military industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.