Abstract
In this experimental study, aluminium (Al)-based graphite (Gr) and silicon carbide (SiC) particle-reinforced, self-lubricating hybrid composite materials were manufactured by powder metallurgy. The tribological and mechanical properties of these composite materials were investigated under dry sliding conditions. The results of the tests revealed that the SiC-reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced alloy and Al–Gr composites. It was found that with an increase in the SiC content, the wear resistance increased monotonically with hardness. The hybridisation of the two reinforcements also improved the wear resistance of the composites, especially under high sliding speeds. Additionally, the wear loss of the hybrid composites decreased with increasing applied load and sliding distance, and a low friction coefficient and low wear loss were achieved at high sliding speeds. The composite with 5wt.% Gr and 20wt.% SiC showed the greatest improvement in tribological performance. The wear mechanism was studied through worn surface and wear debris analysis as well as microscopic examination of the wear tracks. This study revealed that the addition of both a hard reinforcement (e.g., SiC) and soft reinforcement (e.g., graphite) significantly improves the wear resistance of aluminium composites. On the whole, these results indicate that the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.