Abstract

The controllable growth processes of ZnO nanowires by evaporation of metal zinc with high purity and its luminescence properties have been investigated in detail. Firstly, the power of ZnO nanowires with high yield and homogeneous dimension was synthesized using the special quartz boat at 600 °C. Then, the oriented ZnO nanowires with about 20 nm diameter were synthesized by using a 90 nm-thick layer of ZnO nanocrystals on the Si substrate as the seed layer. Both fabrication processes are repeatable and no catalysts are necessary. Finally, photoluminescence (PL) spectroscopy for ZnO nanowires using an He–Cd laser line of 325 nm as the excitation source were measured at room temperature and both samples showed a sharp strong ultraviolet (UV) near-band edge emission. However, different UV peak positions (385 nm for ZnO nanowire powder, 377 nm for ZnO nanowire array) can be observed. The size confinement effect for excitons and carriers is proposed to explain the blue shift of the near-band edge emission with decreasing size and the native defects are responsible for the green emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call