Abstract

Hydrochemical analysis of water samples from Yenagoa in the Niger Delta shows widespread occurrence of iron (Fe) in the groundwater. The Fe concentration is more than 0.3 mg/L at many places, and the distribution is heterogeneous both vertically and horizontally. In order to identify the cause of the high heterogeneity, we carried out an integrated study consisting of hydrogeochemical, electrical resistivity sounding and induced polarization (IP) chargeability measurements at eleven sites and 2-D electrical resistivity profiling (at 2 sites). Data processing using inversion techniques resulted in 4-layered resistivity and chargeability—depth models. The results show that clean sand and gravel exhibit high resistivity but low chargeability and normalized chargeability values, whereas clay and sandy clay exhibit relatively low resistivity but high chargeability and normalized chargeability values. In sites where the aquifer is overlain by a thick clay layer, Fe concentration is high (Fe > 0.3 mg/L) in the groundwater and redox potential values range between 118 and 133 mV. We interpret that the low-permeability clay layer creates a relatively atmosphere-isolated state in the underlying aquifer, which is responsible for the reductive ambient subsurface groundwater environment. In sites where the aquifer is capped by silt, Fe concentration is low (< 0.3 mg/L) in the groundwater and redox potential values range between 115 and 164 mv indicating a mild oxidation environment. We interpret that the clay acts as a controlling factor to the Fe enrichment in the groundwater regime. Knowledge of the clay layer, which is identified in the present study, will be helpful in selecting suitable sites for boreholes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call