Abstract

The reactivity of the reduced Zr/Co and Ti/Co complexes (THF)Zr(MesNPiPr2)3CoN2 (1, Mes = 2,4,6-trimethylphenyl) and (THF)Ti(XylNPiPr2)3CoN2 (7, Xyl = 3,5-dimethylphenyl) toward diaryl ketones is explored in an effort to gain mechanistic insight into C═O bond cleavage processes. Complex 1 reacts with 4,4′-dimethoxybenzophenone to generate ((p-OMeC6H4)2CO)Zr(MesNPiPr2)3CoN2 (2), which exists as a mixture of valence tautomers in solution that interconvert via electron transfer from Co–I to the Zr-bound ketone in 2S to form a Zr-bound ketyl radical in 2T. The geometry of 2 in the solid state is most consistent with the singlet ketone adduct tautomer 2S. Upon removal of the Co-bound N2 under vacuum, complex 2 cleanly coverts to the μ-oxo carbene product (η2-MesNPiPr2)Zr(MesNPiPr2)2(μ-O)Co═C(C6H4p-OMe)2 (5) at room temperature in solution. A diamagnetic intermediate, tentatively assigned as ketone-bridged species (η2-MesNPiPr2)Zr(MesNPiPr2)2Co(μ2,η1η2-OC(p-OMeC6H4)2) (6), is observed spectroscopically during t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.