Abstract
Time-of-flight-secondary ion mass spectrometry (ToF-SIMS) 3D mapping and depth profiling were used to study the anodic iron dissolution mechanisms of mild steel in chloride-containing aqueous CO2 environments. The technique detected adsorbed hydroxide and chloride intermediates formed during the corrosion process, consistent with the proposed multipath reaction mechanism for anodic iron dissolution reaction. Despite the presence of aqueous carbonic species and their observed effect on the kinetics of iron dissolution, no additional adsorbed intermediates have been detected in aqueous CO2 environments, indicating that carbonic species do not directly participate in the iron dissolution reaction. ToF-SIMS 3D mapping results on characterization of the specimens immersed in a chloride-containing solution with and without CO2 suggest that one role of aqueous carbonic species CO2 could be to accelerate the adsorption of chloride ions and the formation of chloride intermediates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have