Abstract

Neon–nitrogen and argon–nitrogen thermionically supported dc triode discharges (typical of those used in plasma-assisted physical vapor deposition processes) have been investigated using optical emission spectroscopy. All discharges were operated with the cathode current density and voltage maintained at 0.06 mA/cm2 and −100 V. A range of nitrogen partial pressures was examined in each inert gas discharge at total pressures of 1.3 and 4.7 Pa. Spectral line intensity ratios were used to obtain information on the species within the plasma region of the discharge, from which the following effects were noted at both total pressures: (i) The N2+/N20 ratio was observed to increase significantly at low nitrogen partial pressures in the neon-based discharges; this is attributed to Penning ionization by neon metastables. (ii) The maximum in the N2+/N20 ratio and minimum in the Ne+/Ne0 ratio occurred at ∼10% nitrogen partial pressure, indicating optimum conditions for Penning ionization. (iii) For nitrogen partial pressures of less than 10%, an increase in atomic nitrogen species was observed for both inert gas discharges; this effect is attributed to the dissociation of nitrogen molecular species (both ionized and neutral) by inert gas metastables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.