Abstract
Purpose. To carry out research the influence of magnetic system configuration (shape and size of the permanent magnets) on magnetic field spatial distribution in working area of new structure design magnetic separator with active front surface by numerical methods. Methodology. We have applied the magnetic field numerical simulation for permanent magnets system in absence of electrical current in magnetostatic approximation. We have solved the problem by using finite element method. Research of permanent magnets cross-sectional shape influence made in the two-dimensional formulation using software package Elcut. Research of magnetic field induction spatial (three-dimensional) distribution in new construction magnetic separator working area is conducted using software package COMSOL Multiphysics 3.5a. Results. Magnetic flux density maximum in the immediate vicinity of permanent magnet surface provide magnets with spherical and trapezoidal cross-sectional shape. At a distance from pole surface, where the separation process working, magnetic field density produced by trapezoidal and spherical cross section magnets, substantially lower in comparison with rectangular magnets. Rectangular and rectangular with beveled corners cross-section shape magnets create approximately same magnetic field intensity not significantly different in weight. Analysis of the spatial distribution of magnetic field induction in the working area of a new construction magnetic separator has shown that a strong magnetic field with high magnetic flux density gradient value is formed in the interpolar working volume. Originality. For the first time research of magnetic flux density distribution in working area of new construction magnetic separator is conducted. Developed device feature is complex spatial distribution of magnetic field. Practical value. Results of research can be used for selection of rational parameters of separator magnetic system. Received results also can be used for determination of separator force characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.