Abstract

The sensing characteristics of long period gratings (LPGs) in photonic crystal fiber (PCF) can be changed by using femtosecond laser to modify the PCF waveguide structure although dispersive characteristic plays a key role in determining the sensitivity. Based on the coupled local-mode theory, the coupling behaviors and spectral characteristics of the LPGs in PCF fabricated by a femtosecond laser and a CO2 laser are analyzed which are supported by experiment results. When the distance between the central of fiber core and the peak of the drilled hole, namely the micro-hole diameter is about 3.5μm, the temperature and strain sensitivities are changed by 27% (from 6.20 to 7.81pm/°C) and −21% (from −2.41 to −1.91pm/με) in comparison with the changes of the sensitivities that is induced by CO2 laser. The investigation demonstrates that the local structural changes of PCF have an impact on the sensitivity of LPGs. The investigation demonstrates the versatility of the technique in potential applications to design the desired sensitivity of fiber grating flexibly by forming proper geometrical modulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.