Abstract

This study investigates a hybrid SAGD (steam-assisted gravity drainage) process utilizing four gaseous solvents, namely, carbon dioxide, propane, nitrogen and methane that are co-injected with steam at different concentrations of 5.0, 7.5 and 10.0 wt%. The objectives are to evaluate and compare the effectiveness of non-condensable gases like methane, nitrogen and carbon dioxide with those of condensable hydrocarbons like propane; to evaluate the performance of hybrid SAGD applied to depleted, low-pressure oil reservoirs; and to numerically simulate the experimental results and obtain tuned relative permeability curves. For this purpose, rigorous experimentation is done using a laboratory-scale, cylindrical replica (i.e., physical model) of an oil reservoir with a set of parallel horizontal injection and production wells. A numerical process model is developed, simulated, and calibrated with the help of experimental data. The experimental setup incorporates i) an injection system designed to co-inject solvent and steam at the required injection temperature of 195°C and pressure of 1.45 MPa, gauge; ii) a production system designed to collect the produced fluids and measure the fractional flow of each phase while ensuring smooth operation with minimal variations in production pressure; and iii) control systems designed to precisely control the heaters temperatures. The experiments are performed at isothermal conditions with model permeability and porosity, respectively, 10.7 Darcy and 32%. It is observed that for low pressure reservoirs, oil recoveries with co-injected solvents are at least 18% more than that from steam alone. On an equal-weight-percentage basis, methane is found to be the best solvent, and results in the highest oil recovery of 50.7% of the original oil in place. Compared to non-condensable gases, propane has the highest solvent retention of up to 15%. The gases with higher solubility in heavy oil, like carbon dioxide and propane, show a reduction in oil recovery with an increase in feed solvent concentration. A numerical model of the process is developed and simulated using Computer Modelling Group’s (CMG) WinProp and STARS simulators. For the solvents that are found to be promising, the simulated oil, water and gas recoveries are history-matched with their experimental counterparts by adjusting the relative permeability curves. The resulting, calibrated model is able to predict oil, water and gas recovery in the hybrid SAGD process with less than 5% relative error.

Highlights

  • This chapter provides a basic definition of crude oil, and a brief discussion about heavy oil and bitumen resources in Canada and around the world

  • This section of the dissertation presents the history-matched results of solvents that were found to be promising

  • The simulated oil, water and gas recovery is history-matched for the experiments in which carbon dioxide, nitrogen and methane were added to the injected stream

Read more

Summary

Introduction

We provide a basic definition of crude oil, and a brief discussion about heavy oil and bitumen resources in Canada and around the world. Included is a brief introduction to state of the art cold heavy oil recovery technologies. Crude oil is a naturally occurring fluid, composed of hydrocarbon deposits and other organic materials. Crude oil can be refined to produce usable products such as gasoline, diesel and various forms of petrochemicals. Heavy oil is a non-renewable energy resource and is usually found alongside other resources, such as natural gas and saline water. The viscosity and relative weight of crude oil varies and define its classification. The properties of the crude oil vary in terms of proportion of its hydrocarbon elements—saturate, aromatic, resin, and asphaltene (SARA) fractions, acid number and sulfur contents, etc

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.