Abstract
Hybrid InSb and GaSb nanostructures (NSs) with different repeated cycles; one, two and four, are inserted in double AlGaAs/GaAs heterostructures by molecular beam epitaxy in Stranski-Krastanov mode. Their morphologies and cross-sectional structure are inspected by atomic force microscopy and transmission electron microscopy. Raman spectroscopy reveals the effect of strains produced by the presence of InSb and GaSb NSs. Optical properties of hybrid InSb and GaSb NSs are investigated by power- and temperature-dependent photoluminescence (PL) spectroscopy. Broad and strong PL emission of hybrid NSs are observed from 20 K to room temperature. The Ohmic contacts are performed by gold alloys metallization and gold bonding on the p-n heterojunction devices for electrical current density-voltage characterization of the devices. Photovoltaic effect of hybrid quantum NS-devices with different NS-cycles are tested and recorded under various illumination intensities. Spectral response at long wavelength in infrared region beyond 1 μm originated from the presence of hybrid NSs is detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.