Abstract

In recent years, millimeter-wave communication has played a crucial role in satellite communication, 5G, and even 6G applications. The millimeter-wave electro-optic modulator is capable of receiving and processing millimeter-wave signals effectively. However, the large attenuation of millimeter waves in the air remains a primary limiting factor for their future applications. Therefore, finding a waveguide structure with a high quality factor (Q-factor) is critical for millimeter-wave electro-optic modulators. This manuscript presents the demonstration of a double ring modulator made of lithium niobate with the specific goal of modulating an RF signal at approximately 35 GHz. By optimizing the microring structure, the double ring resonator with high Q-factor is studied to obtain high sensitivity modulation of the RF signal. This manuscript employs the transfer matrix method to investigate the operational principles of the double ring structure and conducts simulations to explore the influence of structural parameters on its performance. Through a comparison with the traditional single ring structure, it is observed that the Q-factor of the double ring modulator can reach 7.05 × 108, which is two orders of magnitude greater than that of the single ring structure. Meanwhile, the electro-optical tunability of the double ring modulator is 6 pm/V with a bandwidth of 2.4 pm, which only needs 0.4 V driving voltage. The high Q double ring structure proposed in this study has potential applications not only in the field of communication but also as a promising candidate for a variety of chemical and biomedical sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call