Abstract

Dissipation of the cutting heat through the cutting tool assisted by the heat pipe is a new cooling method in metal cutting. However, as an important indicator to evaluate the cooling performance, the heat partition in the cutting process for the heat pipe cutter has not been reported in the previous publications. This investigation is concerned with the estimation of the amount of heat flowing into the heat pipe cutter and that dissipated by the heat pipe. The aim is to characterize the heat partition of the heat pipe cutter and thus evaluate its cooling performance. Experimental results are presented of temperature measurements at the accessible positions on the cutter during orthogonal cutting. With these measured temperatures, the finite different methods and an inverse procedure are utilized to solve the heat flux loaded on the tool–chip interface and the amount of heat flowing into each part of the heat pipe cutter. It is shown that the installation of the heat pipe increases the heat flowing into the tool; however, much greater amount of heat can be dissipated by the heat pipe; this results in the reduction of the temperature at tool–chip interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call