Abstract

Radiative heat transfer plays a major role in the analysis of glazing behavior in fires, but its rigorous modeling has received little attention. In the present study, a spectral radiative heat transfer model, based on the discrete ordinates method (DOM), is developed and employed to analyze heat transfer and the transient temperature distribution in a glazing structure subjected to fire heat flux. Comparisons are made between model predictions and literature experimental data; acceptable agreements are found. The study also investigates the influence of the glass properties and geometry on the temperature and time to breakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.