Abstract

Friction at die/billet interface is a complex phenomenon affected by various operating and process parameters in metal forming industries. In presence of lubricating layer at the interfacial contact friction effect is reduced and enhances tool life and surface quality of product. The lubricant viscosity is strongly dependent on pressure and temperature during deformation of hard material and an accurate prediction of lubricants viscosity leads to realistic results in the work zone. Therefore, the paper incorporates numerical simulation of friction at the die/billet interface in hydrostatic extrusion of tungsten alloy 93W for three different lubricants whose rheology is represented by a Non-Newtonian friction model. The billet heating effect is incorporated in the investigation and results show that the co-efficient of friction varies in a range (0.058 to 0.062) along the work zone for various lubricating conditions in hydrostatic extrusion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.