Abstract

The purpose of this paper is to study the free vibration and buckling of a Timoshenko nano-beam using the general form of the Eringen theory generalized based on the fractional derivatives. In this paper, using the conformable fractional derivative (CFD) definition the generalized form of the Eringen nonlocal theory (ENT) is used to consider the effects of integer and noninteger stress gradients in the constitutive relation and also to consider small-scale effect in the vibration of a Timoshenko nano-beam. The governing equation is solved by the Galerkin method. Free vibration and buckling of a Timoshenko simply supported (S) nano-beam is investigated, and the influence of the fractional and nonlocal parameters is shown on the frequency ratio and buckling ratio. In this sense, the obtained formulation allows for an easier mapping of experimental results on nano-beams. The new theory (fractional parameter) makes the modeling more flexible. The model can conclude all of the integer and non-integer operators and is not limited to the special operators such as ENT. In other words, it allows to use more sophisticated/flexible mathematics to model physical phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.