Abstract

Fractional calculus is a branch of mathematical analysis that studies the differential operators of an arbitrary (real or complex) order and provides a new approach to non-local mechanics. In this study, a theoretical consideration on a new fractional non-local model is presented based on existence of fractional strain energy. It has two additional free parameters compared to classical local mechanics: (1) a fractional parameter which controls the strain gradient order in the strain energy relation and makes the model more flexible to describe physical phenomena, and (2) a non-local parameter to consider small scale effects in micron and sub-micron scales. The model has been used to obtain a fractional non-local plate theory. Free vibrations of a rectangular simply supported (S–S–S–S) plate has been investigated and the meaning of different parameters, such as fractional and non-local parameters, has been shown. The non-linear governing equation has been solved by the Galerkin method. A simple form of the governing equation and the numerical solution is an advantage of this fractional non-local model. Furthermore, the fractional nonlocal theory is contrasted with the Eringen nonlocal theory to show that fractional one enables to obtain much wider class of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call