Abstract

The failure mechanism of aluminum-scandium (Al-Sc) wire bond in comparison with pure Al wire bond under active power cycle (APC) test was investigated. To monitor the degradation of the bond quality, bond shear forces (shear force) were measured over the testing cycles at different level of temperature swing (ΔT). The results show that the Al-Sc wire bond was much more robust than the pure Al wire bond when the ΔT (Tmax) was mild. On the other hand, as the ΔT was increased, the shear force reduction in the Al-Sc wire bond became more and more remarkable. In the cross-sectional analysis of bond contact after the APC tests, a significant crack propagation was observed even for low ΔT conditions for the pure Al wire, and the crack progressed primarily on the wire side of the bond area. As for the Al-Sc wire, while the bond crack was efficiently suppressed for low ΔT conditions, a significant progress of crack was observed at high ΔT conditions, and the crack grew mainly through the Al pad side of the bond area. A detailed analysis at the bond interface after the APC test at high ΔT condition revealed three phenomena at the Al pad side of the bond area: grain coarsening, precipitation of Cu particles, and large void formation. As the material strength is compromised by these effects, the crack grew more easily through the Al pad side of the contact area, resulting in a rapid reduction of shear force at high ΔT. The bond failure mechanism obtained in this study will provide a valuable insight for the future development of high reliability power semiconductor device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call