Abstract
In this paper, indium (In) films were deposited on glass substrates using DC sputtering method. Multiwalled carbon nanotubes (MWCNTs) and dispersant were dissolved in alcohol, and the mixed solution was deposited on the In films using the spray method. The bi-layer MWCNTs-In2O3 films were annealed at different temperatures (from room temperature to 500°C) in O2 atmosphere. The influences of annealing temperature on the characteristics of the bi-layer MWCNTs-In2O3 films were investigated by scanning electron microscopy, X-ray diffraction pattern, Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. A separative extended-gate field-effect transistor (EGFET) device combined with a bi-layer MWCNTs-In2O3 film was constructed as a pH sensor. The influences of different annealing temperatures on the performances of the EGFET-based pH sensors were investigated. We would show that the pH sensitivity was dependent on the thermal oxygenation temperature of the bi-layer MWCNTs-In2O3 films.
Highlights
Carbon nanotubes (CNTs), an important group of nanoscale materials, have received great attention in different fields since their discovery in 1991 by Iijima [1]
The images show that the Multiwalled carbon nanotubes (MWCNTs) adhered firmly on the In2O3 film, the thickness of the In2O3 film was about 240 nm (0.24 μm), and the thickness of the MWCNT film was in the range of 0.85 ~ 1.10 μm
We experimentally found that the conductivity of the MWCNTs/In2O3 films depended on the pH range of the buffer solution and the oxidation temperature of the MWCNTs/In2O3 films in the EFGET devices
Summary
Carbon nanotubes (CNTs), an important group of nanoscale materials, have received great attention in different fields since their discovery in 1991 by Iijima [1]. Due to their unique structural, electronic, and mechanical properties, CNTs make themselves very attractive materials for a wide range of applications [1,2,3]. Chemical and biological sensors [4] based on CNTs have been the target of numerous investigations because of their simplest chemical composition and atomic bonding configuration even though considerable challenges remain in a specific end use. Multiple types of CNT-based chemical sensors have been developed for sensing application. Because single-walled carbon nanotube (SWCNT)-field-effect transistors (FETs) offer several advantages for sensing including the ability to amplify the
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.