Abstract
Atomic force microscope (AFM)-based nanomanufacturing offers an affordable and easily deployable method for fabricating high-resolution nanopatterns. This study employs a comprehensive design of experiment (DOE) approach to investigate the effects of various parameters, such as voltage, speed, and vibration axis, on the width and depth of lithography patterns using electrical field and vibration-assisted lithography on PEDOT: PSS films. The DOE explores the effect of voltage and speed on the process of electrical field and vibration-assisted AFM-based nanopatterning in two vibration trajectories: a circular trajectory employing X and Y axis vibration and a reciprocating trajectory employing Y axis vibration. The results indicate that using circular XY-vibration with a low stiffness contact probe and optimized speed and voltage factors results in higher depth and width of the lithography patterns compared to Y-vibration alone at the same parameters as expected. In both cases, pattern width was dominantly controlled by the voltage. Regarding depth, in XY-vibration, the speed of the tip is the most significant factor, while for Y-vibration, voltage plays the most significant role. It is noteworthy that there is a minimum threshold of speed that can produce a pattern; for example, the high-speed level that produced patterns in the circular trajectory (XY-vibration) did not produce patterns in reciprocating motion (Y-vibration). In conclusion, the study demonstrates the significant impact of voltage, speed, and axis on the width and depth of the lithography patterns. These findings can be instrumental in developing and understanding AFM-based high-resolution nanofabrication techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have