Abstract

Statically loaded corrosion tests, slow strain rate (SSR) tests, and fatigue crack growth rate (FCGR) tests were conducted to evaluate the relative susceptibility of two titanium-base nuclear waste package candidate structural barrier materials Ti-grade 2 and Ti-grade 12-to environmentally enhanced cracking in a simulated repository environment. Statically loaded corrosion tests were done in oxic basalt ground water at 250/sup 0/C; SSR tests were done in oxic basalt ground water at 150, 250, and 300/sup 0/C and in air at 20 and 250/sup 0/C; and FCGR tests were done in basalt ground water, fluoride-ion-enhanced basalt ground water, high-purity water, and air at 90/sup 0/C. The following conclusions can be drawn: the general corrosion rate of statically loaded corrosion coupons was very low in a 3-mo test, and no pitting or cracking of the specimens was observed. Ti-grade 2 and Ti-grade 12 exhibited strain rate dependent ductility diminution in SSR tests. The ductility diminution was most severe in Ti-grade 2 at 300/sup 0/C and in Ti-grade 12 at 250/sup 0/C. For of Ti-grade 12 it was found to be highly orientation dependent. The ductility diminution was also found in tests conducted in air as well as in those conducted in the basalt ground water environment; however, the extent of the degradation was less in air. The ductility diminution cannot be attributed to stress corrosion cracking because the fracture mode was microvoid coalescence in all tests. Evidence obtained in the current study and correlation of the present results with results obtained by other researchers indicate that dynamic strain aging is responsible for the loss of ductility. The FCGR of Ti-grade 2 and Ti-grade 12 was not affected by any of the environmental conditions used in this study, which indicates that no environmental cracking mechanism is operative under the conditions tested (90/sup 0/C, oxic ground water, and frequencies from 0.01 to 5 Hz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.