Abstract

PurposeThe purpose of this paper is to show the applicability of a discrete Hodge operator in the context of the De Rham cohomology to bicomplex-valued electromagnetic wave propagation problems. It was applied in the finite element method (FEM) to get a higher accuracy through conformal discretization. Therewith, merely the primal mesh is needed to discretize the full system of Maxwell equations.Design/methodology/approachAt the beginning, the theoretical background is presented. The bicomplex number system is used as a geometrical algebra to describe three-dimensional electromagnetic problems. Because we treat rotational field problems, Whitney edge elements are chosen in the FEM to realize a conformal discretization. Next, numerical simulations regarding practical wave propagation problems are performed and compared with the common FEM approach using the Helmholtz equation.FindingsDifferent field problems of three-dimensional electromagnetic wave propagation are treated to present the merits and shortcomings of the method, which calculates the electric and magnetic field at the same spatial location on a primal mesh. A significant improvement in accuracy is achieved, whereas fewer essential boundary conditions are necessary. Furthermore, no numerical dispersion is observed.Originality/valueA novel Hodge operator, which acts on bicomplex-valued cotangential spaces, is constructed and discretized as an edge-based finite element matrix. The interpretation of the proposed geometrical algebra in the language of the De Rham cohomology leads to a more comprehensive viewpoint than the classical treatment in FEM. The presented paper may motivate researchers to interpret the form of number system as a degree of freedom when modeling physical effects. Several relationships between physical quantities might be inherently implemented in such an algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.