Abstract

In this research, titanium nitride (TiN) was applied to grade 1 titanium as a bipolar plate for a proton exchange membrane fuel cell (PEMFC). The TiN was deposited by the arc ion plating method (AIP) to investigate the electrochemical characteristics of the anode and cathode environments in the PEMFC. The corrosion experiments were conducted in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 °C) determined by the Department of Energy (DoE). The hydrogen gas and air were bubbled to simulate the anode and cathode environments. The potentiodynamic polarization experiment showed that there was no active peak. The potentiostatic experiment showed that the current densities of the TiN-coated specimens were less than 1 μA/cm2 in both the anode and cathode. As a result of observing the surface with an SEM before and after the potentiostatic experiment, only pinholes generated during the coating process were observed, and no corrosion damage was observed. Furthermore, electrochemical impedance spectroscopy (EIS) analysis showed that the coated specimens had a higher charge transfer resistance than the titanium substrate. In the case of interfacial contact resistance (ICR), the TiN-coated specimen displayed lower resistance than the titanium substrate and satisfied the DoE technical target of less than 10 mΩ·cm2 at 140 N/cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call