Abstract

Purpose – The purpose of this paper was the investigation of transparent conducting oxide (TCO) applied as an additional part of front metal electrode of crystalline silicon solar cell. Transparent conducting oxides are widely used as counter electrodes in a wide range of electronics and optoelectronics applications, e.g. flat panel displays. The most important optical and electrical requirements for TCOs are high optical transmittance and low resistivity. This low resistivity might invoke the possibility of increasing the distance between the fingers in the solar cell front electrode, thus decreasing the total area covered by metal and decreasing the shadowing loss. Design/methodology/approach – In the present work, thin films of indium-tin-oxide (ITO) as a transparent counter electrodes, were evaporated on the surface of silicon n+-p junction structures used in solar cells. The influence of the properties of ITO electrode on the electrical performance of prepared solar cells was investigated through optical and electrical measurements. The discussion on the influence of deposition conditions of the TCO films on recombination of the photogenerated electrical charge carriers and solar cell series resistance was also included. Findings – In this work, the fingers lines 100 μm width were screen-printed on the c-Si wafer with ITO layer. Monocrystalline silicon 25 cm 2,200-μm-thick wafers, were used for this testing. The usefulness of the ITO films as antireflection coating was discussed as well. It is commonly known that electrical performance of solar cells is limited by surface passivation. Despite this, the obtained results for ITO-Si structures showed relatively high value of short circuit current density (Jsc) up to 33 mA/cm2. Originality/value – Our experiments confirmed the potential of application of ITO as anti-reflection coating (ARC) layer and according to their low resistivity possible use as a functional counter electrodes in photovoltaic structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call