Abstract
Solid dispersions of itraconazole (ITR) in lactose, microcrystalline cellulose (MCC), and three superdisintegrants (Primogel, Kollidon CL, and Ac-Di-Sol) and their formulation into tablets were investigated with an objective of enhancing the dissolution rate of ITR from tablet formulations. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to characterize the dispersions. A marked enhancement in the dissolution rate of ITR was observed with all the excipients. The order for the excipients to enhance the dissolution rate was Ac-Di-Sol > Kollidon CL > Primogel > MCC > lactose. Solid dispersions in superdisintegrants gave much higher rates of dissolution than the dispersions in other excipients. Ac-Di-Sol gave the most improvement (28-fold) in the dissolution rate of ITR at a 1:1 drug: excipient ratio. Solid dispersions in superdisintegrants could be formulated into tablets. These tablets, apart from fulfilling all official and other specifications, exhibited higher rates of dissolution and dissolution efficiency (DE) values. XRD indicated the presence of ITR in amorphous form in the dispersions. DSC indicated a weak interaction between ITR and the excipients. Micronization and conversion of the drug into the amorphous form and the fast disintegrating and dispersing action of the superdisintegrants contribute to the enhancement of the dissolution rate of ITR from its solid dispersions in superdisintegrants and their corresponding tablet formulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have