Abstract

Gold nanoparticles (GNPs) radiosensitizing effect strongly depends on the tumor targeting efficacy. The aim of this study is to identify the most ideal targeting decoration for BSA-GNPs according to tumor targeting and biodistribution. Therefore, three well-known targeting agents (folic acid, glucose, and glutamine) were utilized for BSA-GNPs decoration. Glucose-BSA-GNPs, glutamine-BSA-GNPs, and folic acid-BSA-GNPs were synthesized and then, characterized by Fourier-transform infrared spectroscopy and UV-Spectrometry. Then, the GNPs were intravenously injected 10 mg/kg to 4T1 breast tumor-bearing mice to evaluate biodistribution and radiosensitizing effects. Folic acid and glutamine decorations could significantly increase tumor targeting efficacy of BSA-GNPs as 2.1 and 2.4 times increase of gold accumulation was detected in comparison with BSA-GNPs. They exhibited the highest radiosensitizing efficacy and caused about 33% decrease in tumors volume in comparison with BSA-GNPs after 6 Gy radiation therapy. All the GNPs were completely biocompatible. Although, glutamine-BSA-GNPs and folic acid-BSA-GNPs could significantly enhance the tumor targeting and radiosensitizing efficacy of BSA-GNPs, did not exhibit any significant advantage over each other. Therefore, glutamine and folic acid decoration of BSA-GNPs can significantly increase the tumor targeting and therapeutic efficacy as radiosensitizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call